Abstract

Cesium compounds if present in atmosphere, can affect human health as well as the ecosystem due to their highly hazardous nature. Interaction of cesium compounds with abundantly available atmospheric salts can modify the hygroscopic behavior in sub-saturation relative humidity (RH) domain. Any marked modification in growth factor (GF) for the mixed particle state in comparison to the single particles ultimately affects the settling rates and hence the deposition flux. This work studies the hygroscopic behavior of two important cesium bound fission product aerosols (CsI, CsOH) internally mixed with some common atmospheric particles viz. NaCl,(NH4)2SO4 and NaNO3 for a fixed dry particle size of 100 nm. Experimental measurements, performed with Hygroscopic tandem differential mobility analyzer in the range of 20–94% RH, have been compared with the predictions made from Zdanovskii-Stokes-Robinson (ZSR) approach. Apart from the single/pure particle state for the constituents (i.e. mixing ratios 1:0 and 0:1), three other mixing ratios 1:4, 1:1 and 4:1 have been considered. The results show that the GF vs RH pattern for mixed particles is different from that for single CsI and CsOH particles. The intrinsic water uptake behavior for these cesium compounds was found to be perturbed for some of the chosen combinations as well. Deliquescent transition for the mixed particles was observed at lower RH compared to the single electrolytes. Relative differences noticeable for the chosen mixing ratios could be related to the available fractions in the mixed state. Overall, ZSR method was found to be capturing the trend of increasing GFs with increasing RH. Terminal gravitational settling velocities calculated from the measured GFs were also found to be different for single and mixed particles. The relative difference was significant for some combinations and test conditions. Any modification in settling velocity ultimately impacts the deposition flux estimations. Hence neglecting the presence of atmospheric salts affects the accuracy of the source term estimates for a postulated nuclear reactor accident scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call