Abstract
The functionalization of Laponite RD platelets with different cationic, anionic, and nonionic homo- and copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) has been investigated. The effective interaction of the macromolecular RAFT agents (macroRAFTs) with the inorganic particles is known to be of crucial importance for the successful coating of minerals with polymers via RAFT-mediated emulsion polymerization to produce polymer-encapsulated inorganic particles. The macroRAFT agents synthesized in the present work contain carefully selected reinitiating R groups, which bear either ionizable tertiary amine or quaternary ammonium moieties (from 2-(dimethylamino)ethyl methacrylate, DMAEMA), negatively charged acrylic acid (AA) repeat units, or neutral polyethylene glycol (PEG) side chains, and are capable of interacting with Laponite via different adsorption mechanisms. The equilibrium adsorption of these RAFT (co)polymers was investigated by the plotting of adsorption isotherms, and either L-type or H-type curves were obtained. The hydrophobicity of the macroRAFT was shown to promote adsorption, as did the pending configuration of the PEG block. Charge repulsion between AA and the negatively charged surface of Laponite at pH 7.5, on the other hand, was prejudicial for adsorption, while the strong electrostatic interaction between the cationic DMAEMA molecules and the Laponite surface led to high-affinity-type curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.