Abstract

In this study, a soil microcosm experiment was carried out to investigate interactive effects of cadmium (Cd) and benzopyrene (B[a]P) in co-contaminated soil. Results demonstrate that a high level of Cd had an apparent inhibitory effect on the degradation and mineralization of B[a]P, and the concentration of desorbing B[a]P decreased with time. The desorbing fraction of B[a]P contributed more to the degradation of total B[a]P than the non-desorbing fraction did. No transformation of available fractions of B[a]P to bound-residue fraction was observed. The dissipation of available BaP in the soil was attributed predominantly to biodegradation. Cd speciation was not apparently altered by pyrene spiking. The addition of pyrene (250 mg/kg) improved B[a]P degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call