Abstract
The adsorption of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) on the defect-free unreconstructed (UR) rutile TiO2(110) surface has been studied using total energy pseudopotential calculations based on density functional theory. All dye molecules form moderate chemical bonds with the defect-free UR rutile (110) surface in the most stable adsorption configurations. Electronic structure analysis reveals that HOMO and LUMO levels of the adsorbed dye molecules appear within the band gap and conduction band region of the UR surface, respectively. The effect of model slab thickness on interaction strength between the dye and the UR surface has also been examined. Unlike on four-layer slabs, BrGly and BrAsp molecules are dissociatively adsorbed on the three-layer slabs. Interaction between the BrPDI and partially reduced UR rutile (110) as well as the platinized UR surface has also been considered to figure out the effects of O vacancy and previously adsorbed Pt clusters on the binding, electronic, and structural properties of the dye–surface system. The BrPDI molecule prefers to bind to the O vacancy site of the partially reduced UR surface. The existence of the small Ptn (n = 1, 3, and 5) clusters on the reduced UR surface does not significantly alter the binding strength between the surface and BrPDI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.