Abstract

We examine the possibilities of refining an asymptotic description and quantitative calculations of the effects induced by thermal blackbody radiation (BBR) of the environment on the Rydberg states of atoms. Numerical values are calculated and asymptotic expressions are proposed for simplified estimates of natural lifetimes and threshold photoionisation cross sections for Rydberg states of rubidium and caesium atoms with large values of the principal quantum number, n ⩾ 20, and small orbital momenta, l = 0, 1, 2, 3. Based on analytical expressions, we present numerical estimates for the contributions of photoionisation probabilities to the BBR-induced broadening of the Rydberg energy level, as well as the contributions of continuum integrals to thermally induced shifts in the Rydberg-state energy levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.