Abstract

Probiotics play an important role in the maintenance of the gastrointestinal barrier. In addition to direct effects on mucosal integrity, the interaction with the intestinal mucosa may have an active immunoregulatory effect. In the present work, we exposed HT29 intestinal epithelial cells to two Bifidobacterium species to determine their effect on gene expression profile, enterocyte monolayer integrity, and T-cell response. Bifidobacterium breve IPLA 20004 triggered a more pronounced increase in the transepithelial resistance of the enterocyte monolayer than Bifidobacterium bifidum LMG13195. The transcriptome profile of HT29 cells cultured in the presence of B. bifidum LMG13195 showed an increased expression of immune mediators and, interestingly, chemotactic molecules (CXCL10, CCL20, CXCL11 and CCL22) able to recruit lymphocytes. Since regulatory T cells (Treg cells) may express receptors for specific chemokines, we cultured peripheral blood mononuclear cells with supernatants of HT29 cells previously treated with Bifidobacterium strains and analyzed FOXP3 and CD25 Treg markers and CCR6, CXCR3, CCR4, and CCR3 expression on CD4(+) lymphocytes. The proportion of CD25(high) FOXP3(+) cells was significantly increased after culture with B. bifidum LMG13195-conditioned HT29 supernatant. Moreover, this treatment led to the largest amount of CCR6(+) CXCR3(-) CCR4(+) CCR3(+) CD4(+) cells expressing high levels of CD25, corresponding to the Treg population. These results suggest that soluble factors secreted after B. bifidum LMG13195 contact with intestinal epithelial cells favored the generation of CD4(+) CD25(high) lymphocytes expressing chemokine receptor Treg markers, thus making possible their recruitment to the intestinal mucosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.