Abstract

The interactions between dietary fibers (DFs) and small molecules are of great interest to food chemistry and nutrition science. However, the corresponding interaction mechanisms and structural rearrangements of DFs at the molecular level are still opaque due to the usually weak binding and the lack of appropriate techniques to determine details of conformational distributions in such weakly organized systems. By combining our previously established methodology on stochastic spin-labelling of DFs with the appropriately revised set of pulse electron paramagnetic resonance techniques, we present here a toolkit to determine the interactions between DFs and small molecules, using barley β-glucan as an example for neutral DF and a selection of food dye molecules as examples for small molecules. The proposed here methodology allowed us to observe subtle conformational changes of β-glucan by detecting multiple details of the local environment of the spin labels. Substantial variations of binding propensities were detected for different food dyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call