Abstract

The interaction with bacteriophage T4 of the cell surface of Escherichia coli K-12 reconstituted from outer membrane protein O-8, lipopolysaccharide, and the lipoprotein-bearing peptidoglycan sacculus was studied. The reconstituted cell surface was active as a receptor for the phage, resulting in the contraction of the tail sheath, a morphological change in the base plate which was accompanied by the extension of short tail pins down to the cell surface and the penetration of the needle through the cell surface. However, the ejection of phage deoxyribonucleic acid did not take place. Both O-8 and lipopolysaccharide were essential for the interaction. In the reconstitution, the wild-type lipopolysaccharide could not be replaced by either heptoseless lipopolysaccharide or lipid A. The lipoprotein-bearing peptidoglycan sacculus was also found to be an active component for the phage adsorption. The sacculus most likely functioned as a basal framework on which O-8 and lipopolysaccharide assembled to form a flat sheet which is large enough to interact with individual distal ends of long tail fibers of a single phage particle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.