Abstract

Soft-landed adsorption of Au16 on bilayered graphene is investigated using density functional theory. The orientation of the Au16 cluster and number of neighboring surface vacancies affect the overall structural and electronic properties of the cluster. The results of the PBE, vdW-DF, and vdW-DF2 exchange-correlation functionals are compared for the cluster-substrate interaction for systems with and without defects. In the presence of defects size two and greater, an Au atom adsorbs into the topmost graphene layer; this strongly influences the binding energy (>3 eV), while inducing substantial bending in the carbon plane and altering electronic properties of the system. Though the Td-symmetry and electronegative properties of the Au16 structure change in the presence of greater neighboring defects, elements of the cagelike starting structure remain throughout. The electron localization function shows that the in-plane Au–C bonds are of delocalized (metallic) nature and there is a local charge transfer to ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.