Abstract

In this work, structural and electronic properties of zigzag single-walled boron nitride nanotube (BNNT) are considered through density functional theory. In order to reduce the large band gap of BNNT, the effects of 2-5 Au atoms are reported as impurities in two different patterns. We selected two dispersions for Au atoms: one for the random dispersion and the other for the chain dispersion. Our results show that the chain modes have lower formation energy and their band gap is smaller, as well. We could tune the large band gap of BNNT from 5.96 eV to 0.41 eV in chain mode. In the random mode, the band gap could reach a minimum level of 1.01 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.