Abstract

This paper shows the work performed in the study of the capability of isothermal titration calorimetry (ITC) to characterize the interaction between petroleum asphaltenes with a model molecule, namely, nonylphenol. ITC is widely used in biochemistry to study the interaction of proteins with ligands. The intention is to transfer the knowledge into the asphaltene field, with the aim of getting a better understanding of the mechanism of interaction, as well as the energies involved in this process. Calorimetric experiments show that nonylphenol has a complex mechanism of interaction with asphaltenes in toluene, including more than one process. Several models have been used to fit the experimental data. The enthalpies calculated with a model based on polymerization are in the order of -1 to -7 kJ/mol, which are very close to the hydrogen bond energies. This shows the capability of ITC to provide experimental data to the modeling of asphaltene behavior. The number of sites of interaction has been inferred by means of a model taken from protein-ligand science. The values obtained are in the range two to five sites per molecule, assuming an average Mw of 1000 units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call