Abstract
Aspergillus fumigatus and free-living amoebae are common inhabitants of soil. Mechanisms of A. fumigatus to circumvent the amoeba's digestion may facilitate overcoming the vertebrate macrophage defence mechanisms. We performed co-culture experiments using A. fumigatus conidia and the amoeba Acanthamoeba castellanii. Approximately 25% of the amoebae ingested A. fumigatus conidia after 1 h of contact. During intra-amoebal passage, part of the ingested conidia was able to escape the food vacuole and to germinate inside the cytoplasm of A. castellanii. Fungal release into the extra-protozoan environment by exocytosis of conidia or by germination was observed with light and transmission electron microscopy. These processes resulted in structural changes in A. castellanii, leading to amoebal permeabilization without cell lysis. In conclusion, A. castellanii internalizes A. fumigatus conidia, resulting in fungal intracellular germination and subsequent amoebal death. As such, this interaction highly resembles that of A. fumigatus with mammalian and avian macrophages. This suggests that A. fumigatus virulence mechanisms to evade macrophage killing may be acquired by co-evolutionary interactions among A. fumigatus and environmental amoebae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.