Abstract

Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers [Formula: see text] and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to [Formula: see text] via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to [Formula: see text]. Otherwise, inactivation of Pc with CN(-) ions inhibited electron flow from ascorbate to [Formula: see text]. This proves that the main route of electron flow from ascorbate to [Formula: see text] runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to [Formula: see text] is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of [Formula: see text]. The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to [Formula: see text], ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call