Abstract

The interaction of antiparallel transverse domain walls in ferromagnetic nanowires was investigated via micromagnetic simulation with systematic variations of the external field strength as well as the wire thickness. The interaction of antiparallel transverse walls after domain wall collision exhibited damped multiple collisions due to the rigid structure of the antiparallel transverse walls. The detailed process during the multiple collisions was analyzed via the Fast Fourier Transform technique, along with a careful examination of the inner spin structures of the colliding domain walls. It was found that a frequency peak of multiple collisions shifted to a higher peak position as the external field strength increases. With a stronger field strength of around a few hundred mT, it was found that two antiparallel transverse walls were finally annihilated with formation of complex antivortex structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.