Abstract
Surface phase behavior of n-hexadecyl phosphate ( n-HDP) and its mixture with l-arginine (L-arg), which behaves as l-argininium cation (L-arg +) in aqueous solution, at a molar ratio 2:3 in Gibbs adsorption layers has been studied by film balance, Brewster angle microscopy (BAM) and surface tensiometry at ⩽20 °C. The monolayers of n-HDP show three phases that are gas (G), intermediate (I) and liquid condensed (LC), and two phase transitions. A first-order G-I phase transition that is followed by a second-order I-LC phase transition is found in these monolayers. Although the monolayers of the mixtures containing n-HDP and L-arg show three phases, the nature of the middle phase is different from that of the n-HDP monolayers. The three phases observed for the mixed systems are G, liquid expanded (LE) and LC phases. A first-order G-LE phase transition is found at a low surface pressure at ⩾10 °C. This transition is followed by another first-order LE-LC phase transition at a certain higher surface pressure. The first-order nature of the phase transitions for both the systems is confirmed by the presence of plateaus in the π – t curves, which are accompanied by two surface phases. A second-order phase transition in the monolayers of n-HDP is indicated by a gradual change in the surface morphology, from a uniformly bright isotropic to an anisotropic mosaic textured phase, which is accompanied by a continuous change in the surface pressure. The domains formed during the first-order phase transition in the adsorption layers of n-HDP are circular and remain unaffected by changing the temperature. Although the domains of an LE phase are circular, those of an LC phase at the latter transition are fractal in the mixed system. A further branching of the arms of the fractal domains is found to occur by an increase in the temperature. All the results are explained by considering salt formation between anion from n-HDP and L-arg +.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.