Abstract

Benzofurans have important actions on the electrical properties of myocardium; the biochemical basis of those actions is not known. Crystallographic examination of these compounds has revealed that benzofurans share structural homologies with the traditional calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalene and trifluoperazine. In the present study, the ability of amiodarone, desethylamiodarone, and benziodarone to displace the fluorescent ligand 8-anilino-1-napthalene sulfonic acid (ANS) from calmodulin, to modulate the fluorescence emission of dansylcalmodulin, and to inhibit the activation by calmodulin of bovine brain cyclic nucleotide phosphodiesterase and human erythrocyte membrane Ca 2+-ATPase were investigated at concentrations ranging from 10 −8 to 10 −6 m. These benzofurans displaced ANS from calmodulin with nearly equal efficiency upon forming a 1:1 complex with that protein. Each of these compounds also produced a decreased fluorescence emission of dansylcalmodulin, but with relative efficiencies being desethylamiodarone > amiodarone > benziodarone. Amiodarone and desethylamiodarone inhibited calmodulin-stimulable phosphodiesterase activity with similar potencies. Amiodarone and benziodarone inhibited calmodulin-stimulable Ca 2+-ATPase activity equally, but desethylamiodarone had no effect. The observed differential effects of the amiodarone analogs suggest that calmodulin may possess multiple benzofuran-binding sites that are recognized by specific targets and ligands of this Ca 2+-binding protein and that the cellular action of amiodarone and its analogs may reflect calmodulin antagonism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call