Abstract

We studied the effects of aluminum ions on the dephosphorylation of phosvitin catalyzed by acid phosphatase, and the metachromasia resulting from the interaction of phosvitin with toluidine blue. In both cases the action of Al3+ was inhibitory and the extent of inhibition was dependent on Al3+ concentration and the length of incubation of Al3+/phosvitin mixtures. The inhibition profiles of dephosphorylation of phosvitin (50 micrograms/ml) showed IC50 values of 15 and 2 microM Al3+ at 1 and 48 hr incubation time, respectively. The effect was proved to be substrate directed, while the inhibition was not reversed by EDTA. In contrast, the action of other divalent or trivalent cations on the dephosphorylation process, when inhibitory, was completely reversible by EDTA. Exposure of fluorescein 5-isothiocyanate-labeled phosvitin to Al3+ resulted in: a) the failure of the protein to migrate into sodium dodecyl sulfate containing polyacrylamide gels and b) the decrease of the fluorescence emission of the bound fluorescein. These findings suggest that phosvitin can be used as a model for studying interactions of aluminum with multiphosphorylated proteins and other polyanionic biopolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call