Abstract

The processes at the interface between ionic liquids (ILs) and metals are a key factor for understanding especially in electrochemical deposition, nanoscale tribology applications and batteries. In the present work, the interfaces of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Py1,4]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]TFSI) and platinum and aluminum were investigated by depositing thin IL films and studying them with X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum. It is found that there is no evidence of a decomposition reaction of either IL on platinum; however, the imidazolium cation of [EMIm]TFSI shows a strong interaction with the surface in the monolayer regime. In contrast, [Py1,4]TFSI and [EMIm]TFSI show massive decomposition on the aluminum surface without applying any electrochemical potential. The spectra for the [TFSI]− anion components show cleavage of C-F or N-S bonds in both cases. Both cleavage of a single fluorine atom and complete cleavage were observed, leading to further decomposition reactions of the anion. Consequently, new components such as AlOOH, Al(OH)3, Al2S3, Al2(SO4)3 and AlF3 appear at the interface. In addition, there is also evidence of decomposition of the cation by the splitting off hydrogen atoms or parts of the alkyl chain in both ILs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call