Abstract
Samples of Fe 40Ni 38Mo 4B 18, Fe 78B 13Si 9 and Fe 66Co 18B 15Si 1 metallic glasses, selected with respect to the different values of their magnetostriction constants, were irradiated with alpha particle beams ( W=2.8 MeV) using radiation doses of 10 16 and 10 17/cm 2. The fundamental effects underlying the interaction of alpha particle beams with amorphous magnets were studied by transmission and conversion electron Mössbauer spectroscopy (CEMS), hysteresis loops and a.c. susceptibility measurements, and scanning electron microscopy (SEM). The evolution of phases and microstructure during the radiation-induced amorphous-to-crystalline transformation was found to depend on the particle flux and sample composition. Differences between bulk and surface behaviors of the magnetic texture and constituent phases were evidenced. Radiation-driven changes in the saturation magnetic moment, coercive field, real and imaginary components of the a.c. response were observed for all samples studied and found to depend on the radiation dose employed. The surface morphology of the radiation-induced crystalline precipitates was shown to vary as a function of composition, such that both spherical and dendritical modes of growth were observed. By stimulating unconventional pathways for the crystallization process, the interaction of alpha particle beams with glassy ferromagnets offers unique opportunities to understand the fundamentals of nucleation and growth in these systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.