Abstract

The interaction of a set of monovalent (Na+, K+) and divalent (Mg2+, Ca2+) metal cations with single-chain polyguluronate (periodic chain based on a dodecameric repeat unit, 21-helical conformation) is investigated using explicit-solvent molecular dynamics simulations (at 300 K and 1 bar). A total of 14 (neutralising) combinations of the different ions are considered (single type of cation or simultaneous presence of two types of cation, either in the presence or absence of chloride anions). The main observations are: (1) the chain conformation and intramolecular hydrogen bonding is insensitive to the counter-ion environment; (2) the binding of the cations is essentially non-specific for all ions considered (counter-ion atmosphere confined within a cylinder of high ionic density, but no well-defined binding sites); (3) the density and tightness of the distributions of the different cations within the counter-ion atmosphere follow the approximate sequence Ca2+>Mg2+>K+∼Na+; (4) the solvent-separated binding of the cations to the carboxylate groups of the chain is frequent, and its occurrence follows the approximate sequence K+>Na+>Ca2+>Mg2+ (contact-binding events as well as the binding of a cation to multiple carboxylate groups are very infrequent); and (5) the counter-ion atmosphere typically leads to a complete screening of the chain charge within 1.0–1.2 nm of the chain axis and, for most systems, to a charge reversal at about 1.5 nm (i.e. the effective chain charge becomes positive at this distance and as high in magnitude as one-quarter of the bare chain charge, before slowly decreasing to zero). These findings agree well (in a qualitative sense) with available experimental data and predictions from simple analytical models, and provide further insight concerning the nature of alginate–cation interactions in aqueous solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.