Abstract
Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [3H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [3H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [3H]CGS 21680 binding. [3H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [3H]GMP binding was inhibited by GMP and GppNHp, but not by IS,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.