Abstract
Dynamic modulation of repolarization is important in arrhythmogenesis. An inverse relation exists in myocardium between activation time (AT) and action potential duration (APD). We hypothesized that resulting gradients of APD and diastolic interval (DI) interact with restitution properties and modulate the timing of repolarization. Activation-recovery intervals (ARI) were acquired from reconstructed noncontact unipolar electrograms from the left ventricular endocardium in 9 patients (7 male) with normal ventricles. At a basic paced cycle length (median, 450 ms), ARIs shortened along the path of activation, with a mandatory reciprocal increase of DIs. In the median patient, this range of DIs started at 230 ms at the site of earliest activation and increased to 279 ms at the site of latest activation at a basic cycle length of 450 ms. Four consecutive standard S1 to S2 restitution curves were performed. At sites with a longer ARI (and therefore shorter DI) close to the site of stimulation, premature stimulation produced more shortening of ARIs; therefore, the time course of restitution was steeper than at more distal sites. At normal heart rate, the decrease in ARIs along the conduction pathway compensated for later activation. Thus, dispersion in repolarization time (RT) is smaller than dispersion in ARI in a heart with a steep negative AT-ARI relationship. This protective effect is lost in hearts without such a relationship. In the patients with a steep AT-ARI relationship at basic cycle length, this relation is lost after premature stimulation and is a function of prematurity. Thus, dispersion in RT is larger after shortly coupled extra stimuli in patients with a steep AT-ARI relationship. A complex interplay exists between activation-repolarization coupling and restitution properties, largely driven by ARI and DI gradients. This plays a significant role in the dynamics of repolarization in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.