Abstract
In this article, by using the perturbation theory, we analytically solve the eigenvalue problem for the Hamiltonian describing the interaction of a Λ-type three-level atom with a single-mode radiation field without the rotating wave approximation (RWA). For this purpose, the atom–field interaction Hamiltonian, which contains the counter-rotating terms (CRTs), is transformed to an analytically solvable Hamiltonian by applying three successive unitary transformations. According to our calculations, the contribution of CRTs within the transformed Hamiltonian is in fact replaced by transforming the ‘constant detuning’ with the ‘intensity-dependent detuning’ in the first order, and the ‘constant atom–field coupling’ with the intensity-dependent coupling in the second order of the perturbation parameters. Then, by solving the eigenvalue problem for the transformed Hamiltonian, the eigenvector of the considered atom–field Hamiltonian is obtained analytically. Finally, after achieving the state vector of the atom–field system at an arbitrary time, a few nonclassical properties of the system state are investigated numerically. Meanwhile, we compare our results with the presence of RWA, from which the role of CRTs will be established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.