Abstract

Trehalose-containing glycolipid biosurfactants form an emerging group of interesting compounds, which alter the structure and properties of phospholipid membranes, and interact with enzymatic and non-enzymatic proteins. Phospholipases A2 constitute a class of enzymes that hydrolyze the sn-2 ester of glycerophospholipids, and are classified into secreted phospholipases A2 (sPLA2) and intracellular phospholipases A2. In this work, pancreatic sPLA2 was chosen as a model enzyme to study the effect of the trehalose lipid biosurfactant on enzymes acting on interfaces. By using this enzyme, it is possible to study the modulation of enzyme activity, either by direct interaction of the biosurfactant with the protein, or as a result of the incorporation of the glycolipid on the phospholipid target membrane. It is shown that the succinoyl trehalose lipid isolated from Rhodococcus erythropolis 51T7 interacts with porcine pancreatic sPLA2 and inhibits its catalytic activity. Two modes of inhibition are observed, which are clearly differentiated by its timescale. First, a slow inhibition of sPLA2 activity upon preincubation of the enzyme with trehalose lipid in the absence of substrate is described. Second, incorporation of trehalose lipid into the phospholipid target membrane gives rise to a fast enzyme inhibition. These results are discussed in the light of previous data on sPLA2 inhibitors and extend the list of interesting biological activities reported for this R. erythropolis trehalose lipid biosurfactant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call