Abstract
A systemic computation of an electrostatic interaction between a charged spherical colloid and a charged porous membrane with a fixed potential is made under the linear Poisson-Boltzmann theory. The colloid moves along the symmetry axis of the membrane and they are both immersed in a bulk electrolyte. In the calculation, a significant attraction between the colloid and the membrane is found. The orifices on or around the centre of the membrane play a major role in the attraction. The effect of the reduced orifice sizes of the membrane on the interaction is taken into account. Furthermore, the electrostatic interaction energies are significantly changed by the variation of ionic strengths (concentration and valence relating the Dybe length).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.