Abstract

The objective of the present work is to provide, through the association of optical diagnostics on a well-chosen experimental configuration, new insights into the coupling of a vortical gaseous flow with a polydisperse evaporating spray representative of practical injections. A cloud of droplets is injected in an inert laminar round jet, axisymmetric and pulsated, enabling the study of the interaction of strong-vorticity structures with a polydisperse spray. The experiment is a laboratory-scale representation of realistic injection configurations such as in engine combustion chambers or industrial burners. The chosen set-up leads to a well-controlled configuration and allows the coupling of two optical diagnostics, particle imaging velocimetry (PIV) and interferometric particle imaging (IPI), which leads to the study of both the flow dynamic and the droplet size distribution. The behaviour of droplets is analysed regarding their relaxing and evaporating properties. Size-conditioned preferential concentration of both weakly evaporating and strongly evaporating sprays is investigated. Droplet trajectories are also analysed by means of high-rate tomographic visualizations. The time history between their ejection from the nozzle and their interaction with the vortex is strongly related to the droplet preferential concentration and the observed heterogeneous repartition in the gas flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.