Abstract

The nuclear envelope (NE) separates the two major compartments of eukaryotic cells, the nucleus and the cytoplasm. Recent studies suggest that the uptake of nuclear proteins into the nucleus is initiated by binding of nuclear location signals (NLSs) contained within these proteins to receptors in the NE, followed by translocation through the nuclear pore complex. To examine the binding step without interference from intranuclear events, we have used a system consisting of (i) purified rat liver NEs fixed onto glass slides and (ii) the prototype simian virus 40 large T antigen (SV40 T) NLS conjugated to nonnuclear carrier proteins, and we have visualized the receptor-ligand interaction by indirect immunofluorescence. In this system, incubation of isolated NEs with the wild-type SV40 T NLS conjugate with carrier proteins resulted in binding that was signal sequence-dependent, could be competitively blocked with excess conjugated and unconjugated wild-type peptide, did not require ATP, and was not affected by the transport-inhibiting lectin wheat germ agglutinin. In contrast, only minimal binding was observed with a mutant SV40 T NLS conjugate. These results are consistent with those obtained in other, more complex in vitro systems and suggest that binding of the SV40 T NLS is receptor-mediated. Binding is largely abolished by extraction of the NE with the nonionic detergent Triton X-100, suggesting that the receptor is soluble in detergent. We find in the Triton X-100 supernatant four major NLS-binding proteins with apparent molecular masses of 76, 67, 59, and 58 kDa by photoaffinity labeling with a highly specific crosslinker, azido-NLS. The reduced complexity of the system described here should be useful for the functional study of other potential NLSs for the identification and isolation of their binding sites and for the screening of antibodies raised against these binding sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.