Abstract
An experimental investigation was performed to study the three-dimensional flow interaction of a finite-span (aspect ratio of 18) synthetic jet located near the tip of a sweptback wing (cross-sectional profile of NACA 4421, aspect ratio of 4, and sweep angle of 30°) at a Reynolds number of 105 and at three angles of attack of 0°, 9°, and 15.5° (covering the range of attached to separated flow in the vicinity of the synthetic jet). Three blowing ratios were considered as 0.8, 1.2, and 2. Stereoscopic particle image velocimetry data were collected at multiple 2-D planes in the vicinity of the jet’s orifice, which were then used to reconstruct the flow volume, and the effect of the jet’s blowing ratio was analyzed using time-averaged and phase-averaged statistics. The study showed that the flow field in the vicinity of the synthetic jet orifice becomes highly three-dimensional and is governed by the streamwise structures that are associated with the finite span of the orifice (edge vortices). Furthermore, it was demonstrated that the baseline flow field that develops over a swept-back configuration (characterized by spanwise and streamwise vorticity components) is responsible for the immediate breakdown of the coherent structures that are introduced by the synthetic jet orifice and for the formation of the secondary flow structures that were seen in the time-averaged flow field. Moreover, the presence of a tip vortex results in the development of a non-uniform (in the spanwise direction) spanwise boundary layer that becomes more pronounced with increasing angle of attack. Consequently, the development of the flow structures is altered. Finally, the present work suggests that the location of the synthetic jet along the span is not as important (as the angle of attack and the blowing ratio) in the overall formation and evolution of the flow structures issued from the jet. However, the size and strength of these structures are affected by the jet’s spanwise location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.