Abstract

Treatment with PTH (parathyroid hormone) or a high-P(i) diet causes internalization of the type IIa sodium-dependent phosphate (Na/P(i) IIa) co-transporter from the apical membrane and its degradation in the lysosome. A dibasic amino acid motif (KR) in the third intracellular loop of the co-transporter is essential for protein's PTH-induced retrieval. To elucidate the mechanism of internalization of Na/P(i) IIa, we identified the interacting protein for the endocytic motif by yeast two-hybrid screening. We found a strong interaction of the Na/P(i) IIa co-transporter with a small protein known as the PEX19 (human peroxisomal farnesylated protein; PxF, Pex19p). PEX19 can bind to the KR motif, but not to a mutant with this motif replaced with NI residues. PEX19 is highly expressed in mouse and rat kidney. Western blot analysis indicates that PEX19 is located in the cytosolic and brush-border membrane fractions (microvilli and the subapical component). Overexpression of PEX19 stimulated the endocytosis of the Na/P(i) IIa co-transporter in opossum kidney cells in the absence of PTH. In conclusion, the present study indicates that PEX19 may be actively involved in controlling the internalization and trafficking of the Na/P(i) IIa co-transporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.