Abstract

Fusobacterium necrophorum, a Gram-negative anaerobe, is an important bovine pathogen that causes hepatic abscesses, foot rot, mastitis and endometritis. We have previously shown that the 43 kDa outer membrane protein (43 K OMP) of F. necrophorum is a porin protein that plays an important role in bacterial infections; however, the molecular mechanisms by which this protein mediates adhesion remain unclear. In this study, we investigated the role of 43 K OMP in F. necrophorum adhesion to bovine epithelial cells using 43 K OMP-deficient mutants, and identified the protein that interacts with 43 K OMP by immunoprecipitation–mass spectrometry. Our results indicated that the native 43 K OMP and recombinant 43 K OMP could bind to the cell membrane of MAC-T or bovine endometrial epithelial cells (BEECs). When F. necrophorum was preincubated with antibodies against the recombinant 43 K OMP or bovine epithelial cells were preincubated with 43 K OMP, the adhesion of F. necrophorum to MAC-T or BEECs decreased significantly (P<0.01). We successfully constructed a 43 K OMP-deficient strain (A25Δ43 K OMP) and bacterial attachment to MAC-T or BEECs was significantly higher with the F. necrophorum A25 strain than with mutant strain A25Δ43 K OMP (P<0.01). The deficiency of 43 K OMP reduced the binding of F. necrophorum to bovine epithelial cells by 90.5 %–94.9 %. Among the 39 potential differential proteins, fibronectin, collagen and myosin were selected as the target proteins, and direct interaction between 43 K OMP of F. necrophorum and fibronectin was demonstrated. Taken together, these results suggest that 43 K OMP plays a key role in adhesion of F. necrophorum to bovine epithelial cells through its interaction with fibronectin. These findings provide a theoretical basis for the pathogenic mechanism of F. necrophorum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call