Abstract
In this Letter, the binding of 3'-azido-3'-deamino daunorubicin (ADNR) to human serum albumin (HSA) was investigated at different temperatures by fluorescence spectroscopy at pH 7.4. The binding constant was determined according to Stern-Volmer equation based on the fluorescence quenching of HSA in the presence of ADNR. The thermodynamic parameters, ΔH and ΔS, were calculated according to the dependence of enthalpy change on the temperature to be -21.01 kJ mol(-1) and 24.71 J K(-l) mol(-l), respectively. The results revealed that ADNR had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The hydrophobic force played a major role in the interaction of ADNR with HSA, which was in good agreement with the results of molecular modeling study. The effect of various metal ions on the binding constants of ADNR with HSA was also investigated. All the experimental results and theoretical data indicated that ADNR could bind to HSA and be effectively transported and eliminated in body, which might be a useful guideline for further drug design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.