Abstract

The medium chain acyl-CoA dehydrogenase is rapidly inhibited by racemic 3,4-dienoyl-CoA derivatives with a stoichiometry of two molecules of racemate per enzyme flavin. Synthesis of R- and S-3,4-decadienoyl-CoA shows that the R-enantiomer is a potent, stoichiometric, inhibitor of the enzyme. alpha-Proton abstraction yields an enolate to oxidized flavin charge-transfer intermediate prior to adduct formation. The crystal structure of the reduced, inactive enzyme shows a single covalent bond linking the C-4 carbon of the 2,4-dienoyl-CoA moiety and the N5 locus of reduced flavin. The kinetics of reversal of adduct formation by release of the conjugated 2,4-diene were evaluated as a function of both acyl chain length and truncation of the CoA moiety. The adduct is most stable with medium chain length allenic inhibitors. However, the adducts with R-3,4-decadienoyl-pantetheine and -N-acetylcysteamine are some 9- and >100-fold more kinetically stable than the full-length CoA thioester. Crystal structures of these reduced enzyme species, determined to 2.4 A, suggest that the placement of H-bonds to the inhibitor carbonyl oxygen and the positioning of the catalytic base are important determinants of adduct stability. The S-3,4-decadienoyl-CoA is not a significant inhibitor of the medium chain dehydrogenase and does not form a detectable flavin adduct. However, the S-isomer is rapidly isomerized to the trans-trans-2,4-conjugated diene. Protein modeling studies suggest that the S-enantiomer cannot approach close enough to the isoalloxazine ring to form a flavin adduct, but can be facilely reprotonated by the catalytic base. These studies show that truncation of CoA thioesters may allow the design of unexpectedly potent lipophilic inhibitors of fatty acid oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.