Abstract

We have reported a theoretical study on the interaction mechanism between dust particles in the presence of asymmetric ion flow and an external magnetic field in complex plasma. The recent experimental and numerical results on the particle-wake interaction ensures the dominance of the wake effect in the subsonic regime of plasma flow using the cold ion approximation. The recent developments in dusty plasma research and its growing interest towards more realistic magnetized dusty plasma scenarios also demand serious attention to study the wake effect both in the sub and supersonic regimes in the presence of a magnetic field. It is a challenging task to develop a correct, quantitative theory of wake potential for different regimes of magnetic field and ion flow velocity. Analytic expressions for the wake potential have been reported in this paper for both subsonic and supersonic regimes in the presence of an external magnetic field along with Debye-Huckel type potentials. The results show that the wake potential plays a dominant role in the subsonic regime and its strength increases with an increase in magnetic field. The behaviour of the wake potential is found to have an interesting effect on the Coulomb crystallization of dust grains and is studied with the help of molecular dynamic (MD) simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call