Abstract
The interaction characteristics of cement asphalt composite mastic (CAM) and performance properties of cement asphalt emulsion mixtures (CAEM) were evaluated in this work using chemical and mechanical test methods to investigate the effect of the presence of cement on asphalt emulsion mixtures (AEM). The chemical composition of the CAM was obtained through use of X-ray diffraction, Fourier-transform infrared spectroscopy, and environmental scanning electron microscopy (ESEM) as a means to describe the interactions between the cement and asphalt in the composite materials. Test results demonstrated that cement can hydrate with the water phase of the asphalt emulsion. Asphalt droplets can simultaneously enclose cement particles and delay the hydration reaction process of cement. The interaction mechanism of cement particles or hydration products and residual asphalt is a physical compound process. The influence of these findings on asphalt emulsion mixture design and performance properties was assessed using varying mix design components and conducting laboratory-based mechanical test methods for rutting resistance and moisture susceptibility. Mix design components varied including added water content, emulsion content, and cement dosage levels. The optimum fluids content was determined based on the dry indirect tensile strength. It was found that the cement content significantly impacts the optimum fluids content for both added water and emulsion. Furthermore, the presence of cement improves the dry tensile strength, rutting resistance, and moisture susceptibility. Based on microstructural analysis of CAM and CAEM, the mechanism by which cement improves the performance of AEM is attributed to the ability of hydration products to increase both the stiffness of the asphalt binder and the adhesion at the mastic–aggregate interface. In practical applications, this study recommends a mix design method for cement-modified asphalt emulsion mixes (CAEM) based on selection of optimum cement and emulsion contents using indirect tensile strength and verification of the design through evaluation of the moisture susceptibility and rutting resistance of the CAEM mix. Threshold values of CAEM mix mechanical properties to determine the quality of the design are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.