Abstract

We discuss a candidate solution for the controlled trapping and manipulation of two individual Rydberg atoms by means of a magnetic Ioffe-Pritchard trap that is superimposed by a constant electric field. In such a trap Rydberg atoms experience a permanent electric dipole moment that can be of the order of several hundred Debye. The interplay of electric dipolar repulsion and three dimensional magnetic confinement leads to a well controllable equilibrium configuration with tunable trap frequency and atomic distance. We thoroughly investigate the trapping potentials and analyze the interaction-induced stabilization of two such trapped Rydberg atoms. Possible limitations and collapse scenarios are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call