Abstract
Bound states in the continuum (BICs) are localized modes residing in the radiation continuum. They were first predicted for single-particle states, and became a general feature of many wave systems. In many-body quantum physics, it is still unclear what would be a close analog of BICs, and whether interparticle interaction may induce BICs. Here, we predict a novel type of multiparticle states in the interaction-modulated Bose-Hubbard model that can be associated with the BIC concept. Under periodic boundary conditions, a so-called quasi-BIC appears as a bound pair residing in a standing wave formed by the third particle. Under open boundary conditions, such a hybrid state becomes an eigenstate of the system. We demonstrate that the Thouless pumping of the quasi-BICs can be realized by modulating the onsite interactions in space and time. Surprisingly, while the center of mass of the quasi-BIC is shifted by a unit cell in one cycle, the bound pair moves in the opposite direction with the standing wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.