Abstract
The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing the system with both disorder and interactions. Instead, we start with a clean non-Fermi liquid near a 2D ferromagnetic quantum critical point and consider the effects of disorder. In contrast with the disordered Fermi liquid, we find that our model does not suffer from runaway flows to strong coupling and the system has a marginally stable fixed point with perfect conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.