Abstract

Laser-induced shift of atomic states due to the ac Stark effect has played a central role in cold-atom physics and facilitated their emergence as analog quantum simulators. Here, we explore this phenomenon in an atomically thin layer of semiconductor MoSe_{2}, which we embedded in a heterostructure enabling charge tunability. Shining an intense pump laser with a small detuning from the material resonances, we generate a large population of virtual collective excitations and achieve a regime where interactions with this background population are the leading contribution to the ac Stark shift. Using this technique we study how itinerant charges modify-and dramatically enhance-the interactions between optical excitations. In particular, our experiments show that the interaction between attractive polarons could be more than an order of magnitude stronger than those between bare excitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.