Abstract
In two previous papers [33,37], we exposed a combinatorial approach to the program of Geometry of Interaction, a program initiated by Jean-Yves Girard [16]. The strength of our approach lies in the fact that we interpret proofs by simpler structures – graphs – than Girard's constructions, while generalising the latter since they can be recovered as special cases of our setting. This third paper extends this approach by considering a generalisation of graphs named graphings, which is in some way a geometric realisation of a graph on a measured space. This very general framework leads to a number of new models of multiplicative-additive linear logic which generalise Girard's geometry of interaction models and opens several new lines of research. As an example, we exhibit a family of such models which account for second-order quantification without suffering the same limitations as Girard's models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.