Abstract
While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper proposes a novel graph mining algorithm to detect the dense neighborhoods (highly connected regions) in an interaction graph which may correspond to protein complexes. Our algorithm first locates local cliques for each graph vertex (protein) and then merge the detected local cliques according to their affinity to form maximal dense regions. We present experimental results with yeast protein interaction data to demonstrate the effectiveness of our proposed method. Compared with other existing techniques, our predicted complexes can match or overlap significantly better with the known protein complexes in the MIPS benchmark database. Novel protein complexes were also predicted to help biologists in their search for new protein complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.