Abstract
Three cationic polymers with molecular weights and charge density of 3.0 x 10(5) g/mol and 10% (D 6010), 1.1 x 10(5) g/mol and 40% (D6040), and 1.2 x 10(5) g/mol and 100% (D6099) were investigated in aqueous NaCl solutions in the presence of silica. The atomic force microscope (AFM) colloidal probe technique was used to determine silica interparticle interaction forces, which were compared to macroscopic information on the strength of interactions such as compressive yield stress measurements. It was found that in 30 mM NaCl solution the 10% charged polymer produced steric repulsion upon approach and long-range adhesion with multiple pull off events upon retraction at the optimum flocculation concentration. This suggests that the polymer was adsorbed in a conformation where segments extend from the surface, resulting in bridging flocculation. The 40 and 100% charged polymers produced attraction upon approach and strong adhesion with snap out from contact upon separation at optimum polymer dosages. This suggests that these polymers are adsorbed with flat conformations and is typical of charge neutralization or patch attraction. The attractions for 40 and 100% charged polymers measured with the AFM are significantly larger than for the 10% charged polymer. The polymer dose that produced the optimum flocculation and the maximum compressive yield stress typically corresponded to the polymer concentration that produced the maximum adhesion for each polymer. It was found that the magnitude of the adhesive force was more significant in determining the compressive yield stresses of the silica particle sediments than the aggregate size and structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.