Abstract
The AFM colloidal probe technique was used to measure the interaction between microsized silica spheres and annealed polyelectrolyte brushes made of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) in KCl solutions of various pH values and salt concentrations. The interaction energy showed a distance dependence that was affected strongly by the swelling and the electric properties of the brushes. Between PAA brushes and silica particles, a repulsive interaction has been observed for all pH values and salt concentrations reflecting the swelling of the brush with varying pH value and the transition from osmotic to salted brush regime with increasing KCl concentration. Force measurements between P2VP brushes and silica particles revealed a much more complex behavior: a steric repulsion by the swollen brush at low pH values, a complex interplay of attractive and repulsive forces at intermediate pH values and a short-ranged attraction between the collapsed brush and the silica particle at basic pH values and high salt concentrations. The results are interpreted in comparison with the Alexander de Gennes model and zeta potential and ellipsometric measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.