Abstract

The molecular interactions on a protein-resistant surface coated with low-molecular-weight poly(ethylene glycol) (PEG) copolymer brushes are investigated using the extended surface forces apparatus. The observed interaction force is predominantly repulsive and nearly elastic. The chains are extended with respect to the Flory radius, which is in agreement with qualitative predictions of scaling theory. Comparison with theory allows the determination of relevant quantities such as brush length and adsorbed mass. Based on these results, we propose a molecular model for the adsorbed copolymer morphology. Surface-force isotherms measured at high resolution allow distinctive structural forces to be detected, suggesting the existence of a weak equilibrium network between poly(ethylene glycol) and water—a finding in accordance with the remarkable solution properties of PEG. The occurrence of a fine structure is interpreted as a water-induced restriction of the polymer's conformational space. This restriction is highly relevant for the phenomenon of PEG protein resistance. Protein adsorption requires conformational transitions, both in the protein as well as in the PEG layer, which are energetically and kinetically unfavorable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.