Abstract

When two parallel plates are immersed in a solution of small charged particles, the center of the particles is excluded from a region of thickness D/2 near the plate, where D is their diameter. The approach which Langmuir developed for the double layer repulsion in the presence of an electrolyte with ions of negligible size is extended to the case in which one of the "ions" is a charged particle of finite, relatively small size. A general expression for the force generated between the two charged plates immersed in an electrolyte solution containing relatively small charged particles is derived. In this expression, only the electrical potential at the middle distance between the plates is required to calculate the force. A Poisson-Boltzmann equation which accounts for the volume exclusion of the charged particles in the vicinity of the surface is solved to obtain the electrical potential at the middle between the two plates. Starting from this expression, some results obtained previously for the depletion force acting between two plates or two spheres are rederived. For charged plates immersed in a solution of an electrolyte and charged small particles, the effects of the particle charge, particle charge sign, particle size, and volume fraction of the particles on the force acting between the two plates are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.