Abstract

Ab initio calculations at the MP2/6-31G** level have been carried out on the non-Watson-Crick nucleic acids pairs G·U and U·U to obtain the interaction energies and to see whether the derived values are comparable or not with the canonical G-C, A-T and A-U pairs. Optimized geometries of the pairs show that the structural parameters of the isolated bases differ very little on pairing. The guanine -NH2 group does not participate in the hydrogen bonding formation and possesses a pyramidal structure; its intrinsic nonplanarity plays an important role in the out-of-plane intermolecular interactions. Thus, the G·U pair projects three hydrogen bonding acceptor sites, namely, N7(G), O6(G) and O4(U) to the RNA major groove. The interaction energy (DHoint) calculated for the G·U pair (-13.6 kcal/mol) is comparable to that determined for A-T (-13.0 kcal/mol), but considerable smaller than the experimental value reported for G-C (-21.0 kcal/mol). The U·U pair follows the trend that pairing between pyrimidines bases should have lower interacting energies than purine-pyrimidine pairs

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.