Abstract

We investigate clean cylindrical nanostructures with an applied longitudinal static magnetic field. The ground state of these systems becomes degenerate for particular values of the field due to Aharonov-Bohm effect. The Coulomb interaction introduces couplings between the electronic configurations. Consequently, depending on particular selection rules, the ground state may become, in the interacting case, a many body state at the degeneracy points: a gap is then opened. To study this problem, we propose a variational multireference wave function which goes beyond the Hartree-Fock approximation. Using this ansatz, in addition to the replacements of some crossings by avoided crossings, two other important effects of the electron-electron interaction are pointed out: (i) the long-range part of the Coulomb potential tends to shift the position in magnetic field of the crossing or avoided crossing points and, (ii) at the points of degeneracy or near degeneracy, the interaction can drive the system from a singlet to a triplet state inducing new real crossing points in the ground state energy curve as function of the field. In any case, the crossing points that are due to either orbital or spin effects, should manifest themselves in various experiments as sudden changes in the response of the system (magnetoconductance, magnetopolarisability, ...) when the magnetic field is tuned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.