Abstract

Interaction effects of temperature, light, nutrients, and pH on growth and competition of Chlorella vulgaris and Anabaena sp. strain PCC were evaluated using an orthogonal design method to elucidate how these environment factors promote the growth of beneficial algae and limit the growth of harmful algae. The optimal conditions for the growth of C. vulgaris in the mono-culture system were as follows: temperature, 35°C; light, 660 lx; N concentration, 0.36 mg L−1; P concentration, 0.1 mg L−1; and pH, 9.0; and those for Anabaena were as follows: temperature, 30°C; light, 6,600 lx; N concentration, 0.18 mg L−1; P concentration, 0.1 mg L−1; and pH, 7.0. The optimal conditions for the growth of C. vulgaris in the co-culture system were as follows: temperature, 25°C; light, 4,400 lx; N concentration, 0.18 mg L−1; P concentration, 0.5 mg L−1; and pH, 6.0; and those for Anabaena were as follows: temperature, 35°C; light, 4,400 lx; N concentration, 0.36 mg L−1; P concentration, 0.5 mg L−1; and pH, 6.0. Both competition-inhibition parameters of Anabaena against C. vulgaris and those of C. vulgaris against Anabaena were the largest under the following conditions: temperature, 30°C; light intensity, 6,600 lx; N concentration, 0.36 mg L−1; P concentration, 0.025 mg L−1; and pH, 8.0. According to the Lotka–Volterra competition model, Anabaena won in the competition in the co-culture system with the following conditions: 1) temperature, 15°C; light, 660 lx; total N (TN), 0.18 mg L−1; total P (TP), 0.025 mg L−1; pH, 6; 2) temperature, 15°C; light, 2,200 lx; TN, 0.36 mg L−1; TP, 0.025 mg L−1; pH, 7; 3) temperature, 15°C; light, 6,600 lx; TN, 3.6 mg L−1; TP, 0.5 mg L−1; pH, 9; 4) temperature, 30°C; light, 4,400 lx; TN, 0.18 mg L−1; TP, 0.05 mg L−1; pH, 9; 5) temperature, 35°C; light, 660 lx; TN, 3.6 mg L−1; TP, 0.05 mg L−1; pH, 8; and 6) temperature, 35°C; light, 2,200 lx; TN, 0.72 mg L−1; TP, 0.025 mg L−1; pH, 9. However, C. vulgaris could not win in the competition in the co-culture system under all conditions tested.

Highlights

  • Harmful cyanobacterial blooms are becoming increasingly common in eutrophic water bodies, and they may result in a wide range of environmental, social, and economic consequences

  • Our analyses showed that the maximum cell density of C. vulgaris increased with temperature (Supplementary Figure S1) and reached the peak point at 35°C

  • Song et al (2013) observed an apparent exponential growth phase of Chlorella when the temperature increased to 20°C or 25°C, and its specific growth rate and maximum cell density increased with the increase in temperature

Read more

Summary

Introduction

Harmful cyanobacterial blooms are becoming increasingly common in eutrophic water bodies, and they may result in a wide range of environmental, social, and economic consequences. The social and economic effects of cyanobacterial blooms include negative effects on recreational opportunities due to the closure of affected areas, declining local fisheries, and increased water treatment costs (Hoagland et al, 2002; Paerl, 2008). In addition to their wider ecological effects, cyanobacteria are known to produce a suite of secondary metabolites that include hepatotoxins, neurotoxins, and dermatotoxic compounds. These toxins have been linked to reduced water quality and detrimental effects at higher trophic levels (Leonard and Paerl, 2005; Ferrão-Filho et al, 2009), small-animal illness and even mortality (Boyer, 2007; Jacoby and Kann, 2007), and adverse health risks in humans (Paerl, 2008)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.