Abstract
We investigate the local electronic structure of a Sinai-like, quadrilateral graphene quantum billiard with zigzag and armchair edges using scanning tunneling microscopy at room temperature. It is revealed that besides the $(\sqrt{3}\times\sqrt{3})R30${\deg} superstructure, which is caused by the intervalley scattering, its overtones also appear in the STM measurements, which are attributed to the Umklapp processes. We point out that these results can be well understood by taking into account the Coulomb interaction in the quantum billiard, accounting for both the measured density of state values and the experimentally observed topography patterns. The analysis of the level-spacing distribution substantiates the experimental findings as well. We also reveal the magnetic properties of our system which should be relevant in future graphene based electronic and spintronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.