Abstract

Many proteins contain large structurally disordered regions or are entirely disordered under physiological conditions. The functions of these intrinsically disordered proteins (IDPs) often involve interactions with other biomolecules. An important emerging effort has thus been to identify the molecular mechanisms of IDP interactions and how they differ from the textbook notions of biomolecular binding for folded proteins. In this review, we summarize how the versatile tool kit of single-molecule fluorescence spectroscopy can aid the investigation of these conformationally heterogeneous and highly dynamic molecular systems. We discuss the experimental observables that can be employed and how they enable IDP complexes to be probed on timescales from nanoseconds to hours. Key insights include the diverse structural and dynamic properties of bound IDPs and the kinetic mechanisms facilitated by disorder, such as fly-casting; disorder-mediated encounter complexes; and competitive substitution via ternary complexes, which enables rapid dissociation even for high-affinity complexes. We also discuss emerging links to aggregation, liquid-liquid phase separation, and cellular processes, as well as current technical advances to further expand the scope of single-molecule spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call