Abstract

SUMMARY In this paper, we briefly describe the patented E-TRAN electric roadway & vehicle concept and then proceed to study the dynamic effects of an associated road pantograph in contact with a road mounted power strip. During usage, the road pantograph (supported underneath the vehicle) allows power to be drawn from the strip for powering the motor driven vehicle. From a mechanical point of view, friction, wear and dynamic bounce effects impact the reliability arid maintainability of the pantograph/strip concept. To study bounce effects, a dynamic model of a one degree of freedom road pantograph was developed for both contact and noncontact situations. These dynamic “bounce” effects were simulated using a MATRIXx™ based model of the road pantograph and associated road surface (and strip). In order to do so, several simulation issues had to be addressed (some of which may be of interest to those studying wheel/rail contact effects). To corroborate the dynamic model, an instrumented experimental pantograp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.